Acta Chir Orthop Traumatol Cech. 2011; 78(5):404-409 | DOI: 10.55095/achot2011/062

Biomechanical Comparison of an Interspinous Device and a Rigid Stabilization on Lumbar Adjacent Segment Range of MotionOriginal papers

F. HARTMANN1,*, S. O. DIETZ1, S. KUHN1, H. HELY2, P. M. ROMMENS1, E. GERCEK1
1 Department of Trauma Surgery, Center for Musculoskeletal Surgery, University Medical Centre Mainz, Germany
2 Physic Division, University of Applied Sciences Wiesbaden, Germany

PURPOSE OF THE STUDY:
Decompression surgery with or without fusion is the gold standard treatment of lumbar spinal stenosis, but adjacent segment degeneration has been reported as a long-term complication after fusion. This led to the development of dynamic implants like the interspinous devices. They are supposed to limit extension and expand the spinal canal at the symptomatic level, but with reduced effect on the range of motion of the adjacent segments. The aim of the present study is the evaluation of the biomechanical effects on the range of motion (ROM) of adjacent lumbar segments after decompression and instrumentation with an interspinous device compared to a rigid posterior stabilization device.

MATERIALS AND METHODS:
Eight fresh frozen human cadaver lumbar spines (L2-L5) were tested in a spinal testing device with a moment of 7.5 Nm in flexion/extension, lateral bending and rotation with and without a preload. The preload was applied as a follower load of 400N along the curvature of the spine. The range of motion (ROM) of the adjacent segments L2/L3 and L4/L5 was measured with the intact segment L3/L4, after decompression, consisting of resection of the interspinous ligament, flavectomy and bilateral medial facetecomy, and insertion of the Coflex® (Paradigm Spine, Wurmlingen) and after instrumentation with Click X® (Synthes, Umkirch) as well.

RESULTS:
The interspinous and the rigid device caused a significant increase of ROM at both adjacent segments during all directions of motion and under follower load, without significant difference between these devices. The ROM of L2/L3 tends to increase more than the ROM of L4/L5 after instrumentation without statistical significance.

DISCUSSION:
The "dynamic" Coflex device caused a significant increase of ROM at both adjacent lumbar segments comparable to the increase of ROM after instrumentation with the rigid Click X device. Other in vitro studies observed comparable biomechanical effects on the adjacent segments after fusion, but biomechanical spacer studies concentrated on the "non-compressible" X-Stop® and could not demonstrate a significant adjacent segment effect of this device.

CONCLUSIONS:
The hypothesis, that an interspinous device would reduce the stress on adjacent segments compared to a rigid posterior stabilization device, could not be demonstrated with this biomechanical in vitro study. Therefore, the protection of adjacent segments after instrumentation with dynamic devices is still not completely achieved.

Keywords: interspinous device; biomechanics; lumbar spinal stenosis; adjacent segment effect

Published: October 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HARTMANN F, DIETZ SO, KUHN S, HELY H, ROMMENS PM, GERCEK E. Biomechanical Comparison of an Interspinous Device and a Rigid Stabilization on Lumbar Adjacent Segment Range of Motion. Acta Chir Orthop Traumatol Cech. 2011;78(5):404-409. doi: 10.55095/achot2011/062. PubMed PMID: 22094153.
Download citation

References

  1. ADELT, D.: [The interspinous U implant (now Coflex): long-term outcome, study overview and differential indication]. Orthopade, 39: 595-601, 2010. Go to original source... Go to PubMed...
  2. AXELSSON, P. JR., STROMQVIST, B.: Adjacent segment hypermobility after lumbar spine fusion: no association with progressive degeneration of the segment 5 years after surgery. Acta Orthop., 78: 834-839, 2007. Go to original source... Go to PubMed...
  3. BASTIAN, L., LANGE, U., KNOP, C., TUSCH, G., BLAUTH, M.: Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur. Spine J., 10: 295-300, 2001. Go to original source... Go to PubMed...
  4. CHEH, G., BRIDWELL, K. H., LENKE, L. G., BUCHOWSKI, J. M., DAUBS, M. D., KIM, Y., BALDUS, C.: Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine, 32: 2253-2257, 2007. Go to original source... Go to PubMed...
  5. CHOW, D. H., LUK, K. D., EVANS, J. H., LEONG, J. C.: Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine, 21: 549-555, 1996. Go to original source... Go to PubMed...
  6. CIENCIALA, J., CHALOUPKA, R., REPKO, M., KRBEC, M.: [Dynamic neutralization using the Dynesys system for treatment of degenerative disc disease of the lumbar spine]. Acta Chir, orthop. Traum. čech., 77: 203-208, 2010. Go to original source...
  7. CUNNINGHAM, B. W., KOTANI, Y., McNULTY, P. S., CAPPUCCINO, A., McAFEE, P. C.: The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine, 22: 2655-2663, 1997. Go to original source... Go to PubMed...
  8. CRIPTON, P. A., BRUEHLMANN, S. B., ORR, T.E., OXLAND, T. R., NOLTE, L. P.: "In vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-related Artefacts," J. Biomech., 33: 1559-1568, 2000. Go to original source... Go to PubMed...
  9. DELANK, K. S., GERCEK, E., KUHN, S., HARTMANN, F., HELY, H., RÖLLINGHOFF, M., ROTHSCHILD, M. A., STÜTZER, H., SOBOTTKE, R., EYSEL, P.: How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop. Trauma Surg., 130: 285-292, 2010. Go to original source... Go to PubMed...
  10. DREISCHARF, M., ZANDER, T., BERGMANN, G., ROHLMANN, A.: A non-optimized follower load path may cause considerable intervertebral rotations. J. Biomech., 43(13): 2625-2628, 2010. Go to original source... Go to PubMed...
  11. EKMAN, P., MÖLLER, H., SHALABI, A., YU, Y. X., HEDLUND, R.: A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur. Spine J., 18: 1175-1186, 2009. Go to original source... Go to PubMed...
  12. ESSES, S. I., DOHERTY, B. J., CRAWFORD, M. J., DREYZIN, V.: Kinematic evaluation of lumbar fusion techniques. Spine, 21: 676-684, 1996. Go to original source... Go to PubMed...
  13. GOEL, V. K., PANJABI, M. M., PATWARDHAN, A. G., DOORIS, A. P., SERHAN, H., AMERICAN SOCIETY FOR TESTING AND MATERIALS: Test protocols for evaluation of spinal implants. J. Bone Jt Surg., 88-A Suppl. 2: 103-109, 2006. Go to original source... Go to PubMed...
  14. HA, K. Y., SCHENDEL, M. J., LEWIS, J. L., OGILVIE, J. W.: Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J. Spinal Disord.: 6: 99-105, 1993 Go to original source...
  15. HARTMANN, F., DIETZ, S. O., HELY, H., ROMMENS, P. M., GERCEK, E.: Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions. Arch. Orthop. Trauma Surg., 131: 917-926, 2011. Go to original source... Go to PubMed...
  16. HARTMANN, F., GERCEK, E., DIETZ, S. O., HELY, H., ROMMENS, P. M.: Development of a multisegmental test body to calibrate and validate studies with spinal testing devices with follower load. Biomed Tech (Berl)., 56: 99-105, 2011. Go to original source... Go to PubMed...
  17. HILIBRAND, A. S., ROBBINS, M.: Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine, 4: 190S-194S, 2004. Go to original source... Go to PubMed...
  18. HRABÁLEK, L., MACHÁC, J., VAVERKA, M.: [The DIAM spinal stabilisation system to treat degenerative disease of the lumbosacral spine]. Acta Chir. orthop. Traum. čech., 76: 417-23, 2009. Go to original source...
  19. KAECH, D. L., FERNANDEZ, C., LOMBARDI-WEBER, D.: The Interspinous 'U': a new restabilization device for the lumbar spine. In: KAECH, D. L., JINKINS, J.R. (eds), Spinal restabilization procedures. Elsevier, Amsterdam, 2002; pp.355-362.
  20. KONG, D. S., KIM, E. S., EOH, W.: One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J. Korean Med. Sci., 22: 330-335, 2007. Go to original source... Go to PubMed...
  21. LEE, C. S., HWANG, C. J., LEE, S.W., AHN, Y. J., KIM, Y. T., LEE, D. H., LEE, M. Y.: Risk factors for adjacent segment disease after lumbar fusion. Eur. Spine J., 18: 1637-1643, 2009. Go to original source... Go to PubMed...
  22. MIYASAKA, K., OHMORI, K., SUZUKI, K., INOUE, H.: Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine, 25: 732-737, 2000. Go to original source... Go to PubMed...
  23. OLSEWSKI, J. M., SCHENDEL, M. J., WALLACE, L. J., OGILVIE, J. W., GUNDRY, C. R.: Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands. Spine, 21: 1945-1951, 1996. Go to original source... Go to PubMed...
  24. PARK, P., GARTON, H. J., GALA, V. C., HOFF, J. T., McGILLICUDDY, J. E.: Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine, 29: 1938-1944, 2004. Go to original source... Go to PubMed...
  25. PANJABI, M. M.: Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine, 13: 1129-1134, 1988. Go to original source... Go to PubMed...
  26. PATWARDHAN, A. G., HAVEY, R. M., MEADE, K. P., LEE, B., DUNLAP, B.: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 24: 1003-1009, 1999. Go to original source... Go to PubMed...
  27. PELLISE, F., HERNANDEZ, A., VIDAL, X., MINGUELL, J., MARTÍNEZ, C., VILLANUEVA, C.: Radiologic assessment of all unfused lumbar segments 7.5 years after instrumented posterior spinal fusion. Spine, 32: 574-579, 2007. Go to original source... Go to PubMed...
  28. PENTA, M., SANDHU, A., FRASER, R. D.: Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine, 20: 743-747, 1995. Go to original source... Go to PubMed...
  29. PHILLIPS, F. M., REUBEN, J., WETZEL, F. T.: Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. J. Bone Jt Surg., 84-B.: 289-294, 2002. Go to original source...
  30. ROHLMANN, A., NELLER, S., CLAES, L., BERGMANN, G., WILKE, H. J.: Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine. Spine, 26: 557-561, 2001. Go to original source... Go to PubMed...
  31. SCHULTE, L. T., LEISTRA, F., BULLMANN, V., OSADA, N., VIETH, V., MARQUARDT, B., LERNER, T., LILJENQVIST, U., HACKENBERG, L.: Disc height reduction in adjacent segments and clinical outcome 10 years after lumbar 360° fusion. Eur. Spine J., 16: 2152-2158, 2007. Go to original source... Go to PubMed...
  32. SEITSALO, S., SCHLENZKA, D., POUSSA, M., OSTERMAN, K.: Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a long-term follow-up. Eur. Spine J., 6: 393-397, 1997. Go to original source... Go to PubMed...
  33. SWANSON, K. E., LINDSEY, D. P., HSU, K. Y., ZUCHERMAN, J. F., YERBY, S. A.: The effects of an interspinous implant on intervertebral disc pressures. Spine, 28: 26-32, 2003. Go to original source... Go to PubMed...
  34. WAI, E. K., SANTOS, E. R., MORCOM, R. A., FRASER, R. D.: Magnetic resonance imaging 20 years after anterior lumbar interbody fusion. Spine, 31: 1952-1956, 2006. Go to original source... Go to PubMed...
  35. WEINHOFFER, S. L., GUYER, R. D., HERBERT, M., GRIFFITH, S. L.: Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine, 20: 526-31. 1995. Go to original source... Go to PubMed...
  36. WILKE, H. J., WENGER, K., CLAES, L.: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur. Spine J., 7: 148-154, 1998. Go to original source... Go to PubMed...
  37. WILKE, H. J., DRUMM, J., HÄUSSLER, K., MACK, C., STEUDEL, W. I., KETTLER, A.: Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur. Spine J., 17: 1049-1056, 2008. Go to original source... Go to PubMed...
  38. WISEMAN, C. M., LINDSEY, D. P., FREDRICK, A. D., YERBY, S. A.: The effect of an interspinous process implant on facet loading during extension. Spine, 30: 903-907, 2005. Go to original source... Go to PubMed...
  39. YANG, J. Y., LEE, J. K., SONG, H. S.: The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion. Spine, 33: 503-507, 2008. Go to original source... Go to PubMed...