Acta Chir Orthop Traumatol Cech. 2019; 86(2):110-117 | DOI: 10.55095/achot2019/015
Strong Antibacterial Efficacy of Titanium Surfaces Modified by Nanotubes and Silver NanoparticlesOriginal papers
- 1 Ortopedická klinika Lékařské fakulty Univerzity Palackého v Olomouci a Fakultní nemocnice Olomouc
- 2 Katedra fyzikální chemie, Regionální centrum pokročilých materiálů a technologií Přírodovědecké fakulty Univerzity Palackého v Olomouci
- 3 Ústav kovových materiálů a korozního inľenýrství Fakulty chemické technologie Vysoké ąkoly chemicko-technologické v Praze
- 4 Ústav mikrobiologie Lékařské fakulty Univerzity Palackého v Olomouci a Fakultní nemocnice Olomouc
- 5 Ústav lékařské chemie a biochemie Lékařské fakulty Univerzity Palackého v Olomouci
- 6 Ústav materiálového inľenýrství Fakulty strojní Českého vysokého učení technického v Praze
- 7 Ústav imunologie Lékařské fakulty Univerzity Palackého v Olomouci a Fakultní nemocnice Olomouc
PURPOSE OF THE STUDY:
Nano-structuring and nano-silver have been extensively studied for improving the antibacterial ability of implants due to their powerful antibacterial activity; however, there is no clinical application as yet. The aim of the study was to determine the antibacterial, antiadhesive and cytotoxic features of Ti6Al4V modified with nano-texturing and silver nano-particles.
MATERIAL AND METHODS:
The nanoparticles were applied on polished and nano-textured Ti6Al4V using sonoreduction. The surface topography, roughness, friction coefficients, hardness and elastic modulus values for prepared top layers were established. The materials were tested for antibacterial and antiadhesion activity using reference bacterial strains (Staphylococcus epidermidis CCM 7221, Staphylococcus aureus MRSA 4591, Enterococcus faecalis CCM 4224, Escherichia coli CCM 3954) and their cytocompatibility.
RESULTS:
A strong antibacterial activity of samples treated with nano-texture and/or silver nanoparticles compared to all the tested bacterial strains at 24 hours was proven. This antibacterial activity was diminishing in relation to Staphylococcus aureus and Enterococcus faecalis at 48 and 72 hours but remained very effective against Staphylococcus epidermidis and Escherichia coli. We also demonstrated antibiofilm activity for samples treated with silver nanoparticles and nano-tubes in experiments lasting 24 and 72 hours.
DISCUSSION:
Our main findings are in agreement with those reported in recent literature. The implant surfaces treated with nano-texture in combination with silver nanoparticles exhibit strong antibacterial and antibiofilm characteristics. Despite there is conclusive evidence of strong antibacterial functioning, why these implant modifications have not been widely applied in clinical practice remains a question. While many obstacles including legislative procedures required for clinical implementation are more or less known, it should be clearly demonstrated that this surface modification does neither harm the patient nor interfere with the long-term survivorship of the implants before their wide-range clinical application.
CONCLUSIONS:
Surface modification of Ti6Al4V with nano-texturing and silver nanoparticles resulted in strong antibacterial and modest antibiofilm effects. Thus, our results confirmed the technological potential of nano-texturing and silver nanoparticles for the improvement of antibacterial properties of implants.
Keywords: prosthetic joint infection, anti-infective biomaterials, titanium alloy, silver nanoparticles, nanotubes, prevention of infection
Published: April 1, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alt V. Antimicrobial coated implants in trauma and orthopaedics-A clinical review and risk-benefit analysis. Injury. 2017;48:599-607.
Go to original source...
Go to PubMed...
- Ballay R, Landor I, Růľička F, Melicherčik P, Tomaides J, Jahoda D. [Alloplastic materials índ their propensity to bacterial colonisation]. Acta Chir Orthop Traumatol Cech. 2016;83:163-168.
Go to original source...
Go to PubMed...
- Beltran-Partida E, Valdez-Salas B, Escamilla A, Moreno-Ulloa A, Burtseva L, Valdez-Salas E, Alvarez MC, Nedev N. The promotion of antibacterial effects of Ti6Al4V alloy modified with TiO2 nanotubes using a superoxidized solution. J Nanomater. 2015.
Go to original source...
- Busscher HJ, van der Mei HC. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS pathogens. 2012;8:e1002440.
Go to original source...
Go to PubMed...
- Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, Schultz MJ, Grainger DW. Biomaterial-associated infection: locating the finish line in the race for the surface. Scie Transl Med. 2012;4:153rv110.
Go to original source...
Go to PubMed...
- Del Pozo JL. Biofilm-related disease. Expert review of anti-infective therapy. 2018;16:51-65.
Go to original source...
Go to PubMed...
- Ercan B, Kummer KM, Tarquinio KM, Webster TJ. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater. 2011;7:3003-3012.
Go to original source...
Go to PubMed...
- Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C Mater Biol Appl. 2016;61:965-978.
Go to original source...
Go to PubMed...
- Fojt J. Ti-6Al-4V alloy surface modification for medical applications. Appl Surf Sci. 2012;262:163-167.
Go to original source...
- Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15:13849-13880.
Go to original source...
Go to PubMed...
- Gallo J, Juranova J, Svoboda M, Zapletalova J. Excellent AUC for joint fluid cytology in the detection/exclusion of hip and knee prosthetic joint infection. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161:310-319.
Go to original source...
Go to PubMed...
- Gallo J, Panacek, A., Prucek, R., Kriegova, E., Hradilova, S., Hobza, M., Holinka, M. Silver nanocoating technology in the prevention of prosthetic joint infection. Materials. 2016;9:337.
Go to original source...
Go to PubMed...
- Gardner AB, Lee SK, Woods EC, Acharya AP. Biomaterials-based modulation of the immune system. BioMed Res Int. 2013;2013:732182.
Go to original source...
Go to PubMed...
- Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model - an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547-5556.
Go to original source...
Go to PubMed...
- Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, Hauschild G, Ahrens H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101:389-395.
Go to original source...
Go to PubMed...
- Mishra SK, Ferreira JM, Kannan S. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym. 2015;121:37-48.
Go to original source...
Go to PubMed...
- Moriarty TF, Grainger DW, Richards RG. Challenges in linking preclinical anti-microbial research strategies with clinical outcomes for device-associated infections. Eur Cell Mater. 2014;28:112-128; discussion 128.
Go to original source...
Go to PubMed...
- Panacek A, Kvitek L, Smekalova M, Vecerova R, Kolar M, Roderova M, Dycka F, Sebela M, Prucek R, Tomanec O, Zboril R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13:65-71.
Go to original source...
Go to PubMed...
- Panacek A, Smekalova M, Kilianova M, Prucek R, Bogdanova K, Vecerova R, Kolar M, Havrdova M, Plaza GA, Chojniak J, Zboril R, Kvitek L. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. 2015;21:E26.
Go to original source...
Go to PubMed...
- Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706-713.
Go to original source...
Go to PubMed...
- Scoccianti G, Frenos F, Beltrami G, Campanacci DA, Capanna R. Levels of silver ions in body fluids and clinical results in silver-coated megaprostheses after tumour, trauma or failed arthroplasty. Injury. 2016;47(Suppl 4):S11-S16.
Go to original source...
Go to PubMed...
- Schmidt-Braekling T, Streitbuerger A, Gosheger G, Boettner F, Nottrott M, Ahrens H, Dieckmann R, Guder W, Andreou D, Hauschild G, Moellenbeck B, Waldstein W, Hardes J. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017;27:483-489.
Go to original source...
Go to PubMed...
- Soloviev M, Gedanken A. Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrason Sonochem. 2011;18:356-362.
Go to original source...
Go to PubMed...
- Včelák J, Matějovský Z Jr., Kofránek I, Kubeą R, Lesenský J. [Periprosthetic infection of the knee megaprosthesis following a resection of malignant tumours around the knee]. Acta Chir Orthop Traumatol Cech. 2017;84:46-51.
Go to original source...
Go to PubMed...
- Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941-3965.
Go to original source...
Go to PubMed...
- Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-B:252-257.
Go to original source...
Go to PubMed...