Acta Chir Orthop Traumatol Cech. 2018; 85(1):22-28 | DOI: 10.55095/achot2018/003
Anterior Cruciate Ligament Tears - Influence on Terminal ExtensionOriginal papers
- 1 Ortopedická klinika 1. lékařské fakulty Univerzity Karlovy a Nemocnice Na Bulovce, Praha
- 2 Radiodiagnostická klinika 1. lékařské fakulty Univerzity Karlovy a Všeobecné fakultní nemocnice, Praha
- 3 1. ortopedická klinika 1. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Motol, Praha
PURPOSE OF THE STUDY:
The aim of this paper was to compare terminal extension in normal and anterior cruciate ligament (ACL) deficient knees, and therefore to determine the role of the ACL during this motion.
MATERIAL AND METHODS:
Ten knees with ACL tears (7 knees with recent ACL tears, 3 knees with long-standing tears) and 10 normal contralateral knees have been examined using MRI in passive hyperextension, 20° flexion and 20° flexion with a 9 kg posteriorly directed load on the femur. Movements of the femoral condyles on the tibia were calculated using previously described methods.
RESULTS:
1. Under the load at 20° flexion, knees with ACL tear showed posterior femoral subluxation (equivalent to a Lachman test), chronic tears being more unstable. Contralateral normal knees were antero-posteriorly stable. In hyperextension, both femoral condyles subluxed posteriorly in ACL tears but not in normal knees.
2. In all knees with ACL tear, the lateral femoral condyle moved posteriorly from hyperextension to 20°, equating to femoral external rotation.
3. The longitudinal rotation axis during terminal extension in normal knees was medial but in ACL tears it was central causing the medial femoral condyle to move forward from hyperextension to 20°. In normal knees, the medial femoral condyle did not move antero-posteriorly from hyperextension to 20° flexion.
DISCUSSION:
Internal rotation of the femur during terminal extension has been recognized for 150 years. The question remains: what causes the usual combination of longitudinal rotation and extension? In the current literature ACL is considered to be responsible for internal rotation of the femur during terminal extension of the knee. So far, as we are aware, the kinematics of terminal extension, including hyperextension, have not been reported after ACL tear in the living knee.
CONCLUSIONS:
Results of this study imply that:
1. The ACL prevents anterior tibial subluxation in hyperextension.
2. The ACL does not cause rotation in terminal extension.
3. The ACL locates the axis of longitudinal rotation in terminal extension.
We hope that by studying living knees with and without ACL tear we may not only clarify the nature and mechanism of rotation in terminal extension, and hence the role of the ACL, but do so in a context of direct clinical relevance.
Keywords: knee, terminal extension, ACL tear, axis of longitudinal rotation, antero-posterior instability, MRI
Published: February 1, 2018 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abbott LC, Saunders JBM, Bost FC, Anderson CE. Injuries to the ligaments of the knee joint. J Bone Joint Surg. 1944;26:503-521.
- Amis AA. The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc. 2012;20:613-620.
Go to original source...
Go to PubMed...
- Amis AA, Dawkins GPC. Functional anatomy of the anterior cruciate ligament. J Bone Joint Surg Br. 1991;73: 260-267.
Go to original source...
Go to PubMed...
- Barnett Ch. Locking at the knee joint. J Anat. 1953;87:91-95.
Go to PubMed...
- Blacharski PA, Murray DG. A three-dimensional study of the kinematics of the human knee. JBiomech. 1975;8:375-384.
Go to original source...
Go to PubMed...
- Blankevoort L, Huiskes R, de Lange A. The envelope of passive knee joint motion. J Biomech. 1988;21:705-720.
Go to original source...
Go to PubMed...
- Brandsson S, Karlsson J, Swärd L, Kartus J, Eriksson BI, Kärrholm J. Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med. 2016;30:361-367.
Go to original source...
Go to PubMed...
- Braune W., Fischer O. Die bewegungen des Kniegelenks nach einer neuer Methode am lebenden Menschen gemessen. S. Hirtzel, Leipzig, 1891.
- Bugnion E. Le Mécanisme du Genou. Ch. Viret-Genton, Lausanne, 1892.
- Chen B, Lambrou T, Offiah AC, Gondim Teixeira PA, Fry M, Todd-Pokropek A. An in vivo subject-specific 3D functional knee joint model using combined MR imaging. Int J Comput Assist Radiol Surg. 2013;8:741-750.
Go to original source...
Go to PubMed...
- Chomiak J, Podškubka A, Dungl P, Ošt'ádal M, Frydrychová M. Cruciate ligaments in proximal femoral focal deficiency: arthroscopic assessment. J Pediatr Orthop. 2012;32:21-28.
Go to original source...
Go to PubMed...
- Chung JH, Ryu KJ, Lee DH, Yoon KH, Park YW, Kim HJ, Kim JH. An analysis of normative data on the knee rotatory profile and the usefulness of the Rotatometer, a new instrument for measuring tibiofemoral rotation: the reliability of the knee Rotatometer. Knee Surg Sports Traumatol Arthrosc. 2015;23:2727-2733.
Go to original source...
Go to PubMed...
- Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep. 2014;16:448.
Go to original source...
Go to PubMed...
- Fick R. Mechanik des Kniegelenkes. In: von Bardeleben K. (ed.). Handbuch der Anatomie des Menschen. Band 2. Abteilung 1. Vol. 3. Jena, Germany. 1911, p 521.
- Fuss FK. The restraining function of the cruciate ligaments on hyperextension and hyperflexion of the human knee joint. Anat Rec. 1991;230:230-283.
Go to original source...
Go to PubMed...
- Fuss FK: Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat. 1992;180:297-304.
Go to PubMed...
- Hallén LG, Lindahl O: The "screw-home" movement in the knee joint. Acta Orthop Scand. 1966;37:97-106.
Go to original source...
Go to PubMed...
- Haughom BD, Souza R, Schairer WW, Li X, Ma CB. Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20:663-670.
Go to original source...
Go to PubMed...
- Hill PF, Vedi V, Williams A, Iwaki H, Pinskerová V, Freeman MAR. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196-1198.
Go to original source...
- Hsieh H, Walker PS. Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am. 1976;58:87-93.
Go to original source...
Go to PubMed...
- Iwaki H, Pinskerová V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189-1195.
Go to original source...
Go to PubMed...
- Johal P, Williams A, Wragg P, Hunt D and Gedroyc W. Tibiofemoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. J Biomech. 2005;38:269-276.
Go to original source...
Go to PubMed...
- Kärrholm J, Bransson S, Freeman MAR. Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. J Bone Joint Surg Br. 2000;82:1201-1203.
Go to original source...
- Keays SL, Sayers M, Mellifont DB, Richardson C. Tibial displacement and rotation during seated knee extension and wall squatting: a comparative study of tibiofemoral kinematics between chronic unilateral anterior cruciate ligament deficient and healthy knees. Knee. 2013;20:346-453.
Go to original source...
Go to PubMed...
- Kocher MS. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629-634.
Go to original source...
Go to PubMed...
- Kothari A, Haughom B, Subburaj K, Feeley B, Li X, Ma CB. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0 Tesla magnetic resonance imaging. Knee. 2012;19:648-651.
Go to original source...
Go to PubMed...
- Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A. Three-dimansional kinematics of the human knee during walking. J Biomech. 1992;4:347-357.
Go to original source...
Go to PubMed...
- Lerat JL, Moyen BL, Cladière F, Besse JL, Abidi H. Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Joint Surg Br. 2000;82:42-47.
Go to original source...
- Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman MAR. Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open interventional multiple resonance imaging. Am J Sports Med. 2004;32:720-726.
Go to original source...
Go to PubMed...
- Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman MAR. The effect of posterior cruciate ligament deficiency on knee kinematics. Am J Sports Med. 2004;32:1915-1922.
Go to original source...
Go to PubMed...
- McLeod WD, Moschi A, Andrews JR, Hughson JC. Tibial plateau topography. Am J Sports Med. 1977;5:13-18.
Go to original source...
Go to PubMed...
- Meyer H. Die Mechanik des Kniegelenkes. Archiv für Anatomie und Physiologie. 1853, pp.497-547.
- Moewis P, Boeth H, Heller MO, Yntema C, Jung T, Doyscher R, Ehrig RM, Zhong Y, Taylor WR. Towards understanding knee joint laxity: errors in non-invasive assessment of joint rotation can be corrected. Med Eng Phys. 2014;36:889-895.
Go to original source...
Go to PubMed...
- Nägerl H, Kubein-Meesenburg D, Cotta H, Fanghänel J. Biomechanische Prinzipen in Diarthrosen und Synarthrosen. Z Orthop. 1993;131:385-396.
Go to original source...
Go to PubMed...
- Pasa L, Pokorný V, Adler J. Arthroscopic treatment of the unstable knee joint by ligament reconstruction using allografts. Acta Chir Orthop Traumatol Cech. 2001;68:31-38.
Go to PubMed...
- Pinskerová V, Iwaki A, Freeman MAR. The shapes and relative movements of the femur and tibia in the cadaveric knee: A study using MRI and an anatomical tool. In: Insall J, Scott WN (eds). Surgery of the knee. Ed 3., WB Saunders, Philadelphia, 2000, pp.255-284.
Go to original source...
- Pinskerová V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MAR. Does the femur roll-back with flexion? J Bone Joint Surg Br. 2004;86:925-931.
Go to original source...
Go to PubMed...
- Pinskerová V, Maquet P, Freeman MAR. Annotation. Writings on the knee between 1836 and 1917. J Bone Joint Surg Br. 2000;82:1100-1102.
Go to original source...
- Podškubka A, Hruška L, Holeček J. Indications for and contribution of diagnostic arthroscopy of the knee joint. Acta Chir Orthop Traumatol Cech. 1989;56:14-23.
Go to PubMed...
- Rajendran K: Mechanism of locking at the knee joint. J Anat. 1985;143:189-194.
Go to PubMed...
- Schneider M, Pinskerová V, Breusch SJ, Noe V, Freeman MAR. Observations of normal and ACL-deficient knee joints after stress MRI. Orthopade. 2006;35:337-346.
Go to original source...
Go to PubMed...
- Shaw JA, Eng M, Murray DG. The longitudinal axis of the knee and the role of the cruciate ligaments in controlling transverse rotation. J Bone Joint Surg Am. 1974;56:1603-1609.
Go to original source...
Go to PubMed...
- Smith TO, Postle K, Penny F, McNamara I, Mann CJV. Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment. Knee. 2014;21:462-470.
Go to original source...
Go to PubMed...
- Yoshioka Y, Siu DW, Scudamore RA. Tibial anatomy and functional axes. J Orthop Res. 1989;7:132-137.
Go to original source...
Go to PubMed...
- Young RB. On the grooves separating the patellar from the menisco-tibial surfaces of the femur, and on locking of the knee-joint in full extension. In: Cleland J, Mackay JY, Young RB (eds). Memoirs and memoranda in anatomy, Vol. 1, Williams and Norgate, London, Edinburgh, 1889.